
Copyright © Ricci IEONG for UST training 2015

Week 9 – Web and 
Mobile Application 
Hacking

10/30/2015 1



Copyright © Ricci IEONG for UST training 2015

Agenda
OWASP top 10 attack and defense class and labs

Mobile security labs
◦ Mobile security attacks

◦ Crack mobile apps (e.g. Android apps)

Mobile Securing methods

10/30/2015 2



Copyright © Ricci IEONG for UST training 2015

OWASP Top 10 & 
Countermeasures
A2 – BROKEN AUTHENTICATION AND SESSION 
MANAGMENT

10/30/2015 3



Copyright © Ricci IEONG for UST training 2015

Authentication
Authentication is the process of verifying the user is really the one 

he/she claimed to be

Most web application authenticate by user their ID + password

10/30/2015 4



Copyright © Ricci IEONG for UST training 2015

HTTP Basic Authentication
Supported by most browsers

Username/password passed in the 
clear with each request

Password may be stored in any format

Authentication through Authorization 
header in Base 64 decoder

10/30/2015 5



Copyright © Ricci IEONG for UST training 2015

HTTP Digest Authentication
Supported by few browsers

Username/password used to build a request-dependent hash for each 
request

Effective password is the MD5 hash of the user’s password

Effective password must be stored in the clear (encryption doesn’t 
count)

10/30/2015 6



Copyright © Ricci IEONG for UST training 2015

HTTP Digest Authentication
Digest Authentication Example
◦ Server request authentication in a 401 message:

◦ WWW-Authenticate: Digest realm="realm",

qop="auth,auth-int",

algorithm="MD5",

nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",

opaque="5ccc069c403ebaf9f0171e9517f40e41"

◦ Client send authentication information:
◦ Authorization: Digest username="user",

realm="realm",

nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",

uri="/dir/index.html",

qop=auth, nc=00000001, nonce="0a4f113b",

response="6629fae49393a05397450978507c4ef1",

opaque="5ccc069c403ebaf9f0171e9517f40e41“

◦ Involves the use of hashing algorithm (by default MD5) and nonce to 
produce digest and checksum

10/30/2015 7



Copyright © Ricci IEONG for UST training 2015

Certificate-based 
Authentication
Using digital certificate for authentication

Based on the certificate of the client to identify the owner of the 
certificate

Server authentication (by public certificate)

Client authentication (Optional)

Can also be supported through, LDAP (a directory access protocol)

SSL/TLS is a generic method of encrypting application-layer network 
traffic using x.509 certs for authentication

10/30/2015 8



Copyright © Ricci IEONG for UST training 2015

NTLM Authentication

10/30/2015 9

SERVER

CLIENT

1. Authentica-
tion request

2. 8-byte
nonce

3. Encrypted   
nonce

4. Retrieval of 
entries from 
SAM 
database

5. Encryption 
of nonce

6. Comparison 
of encrypted 
nonces



Copyright © Ricci IEONG for UST training 2015

Forms-based Authentication
Authentication through web forms

Composed of <FORM> and <INPUT>

Forms contain hidden field called 
state or in cookie

Mainly storing the credentials in 
database

10/30/2015 10



Copyright © Ricci IEONG for UST training 2015

Factor of Authentication
There are 3 factors of authentication

◦ What you know

◦ Password, secrets, user ID, etc

◦ What you have

◦ Hardware tokens, smart cards, etc

◦ Who you are

◦ Biometric information: iris, finger prints, palm data

Multi-factor authentication:

◦ Require the user to provide valid form of more than 1 of the above factors

10/30/2015 11



Copyright © Ricci IEONG for UST training 2015

Two Factor Authentication?
Is this considered two factor authentication?

10/30/2015 12



Copyright © Ricci IEONG for UST training 2015

HTTP Sessions
HTTP does not provide built in session support

◦ Requests are basically independent of each other

However, many server side script (e.g. ASP, PHP, JSP) can provide server 

side session support by identifying HTTP client by their assigned session 

ID or session tokens

10/30/2015 13

HTTP Server

Request #1

Response #1

Request #2

Response #2



Copyright © Ricci IEONG for UST training 2015

HTTP Session ID / token
There are a few ways to store session ID / token in client side

◦ Browser cookies (most common)

◦ URL parameters

◦ Append the session ID to all the URL of the page

◦ Other client storage

◦ Browser object store (e.g. Flash persistent storage)

◦ HTML5 Web Store API

Some common session ID name:

◦ ASP.NET_SessionId

◦ .ASPXAUTH

◦ JSESSIONID

◦ PHPSESSIONID

10/30/2015 14



Copyright © Ricci IEONG for UST training 2015

Authentication Session
A type of session which is specifically for maintaining the state of 
authentication

The ID/token for authentication session should be handled as securely 
as the authentication factors (e.g. username & passwords)

◦ Avoid repeated authentication
◦ the more times the secrets need to be inputted/transferred, the higher chance it might be 

leaked

◦ Limited usage compared to authentication factors
◦ Often can’t be used for re-authentication.

◦ Limited timespans

◦ Limited context

10/30/2015 15



Copyright © Ricci IEONG for UST training 2015

Session Management
Anyone with a valid session ID / token will be treated as the 

corresponding user by the application

◦ Obtaining the session ID / token can impersonate an user

The scheme of handling session ID / token, creating / destroying / 

renewing sessions objects and etc  session management

Involve both client side and server side mechanisms

10/30/2015 16



Copyright © Ricci IEONG for UST training 2015

Broken Authentication and Session 
Management
Application functions related to authentication and session 

management may not be implemented correctly, allowing attackers to 

compromise passwords, keys, session tokens, or exploit other 

implementation flaws to assume other users’ identities

Common flaws:

◦ Session fixations

◦ predictable session IDs

◦ improper use of session tokens, etc

10/30/2015 17



Copyright © Ricci IEONG for UST training 2015

Session Fixation Attack
Instead of breaking / stealing the assigned session ID of a user, the attacker use 
various approach to “fix” a session ID to be used by a user

Potential ways of fixing a session ID
◦ XSS vulnerability in a page within the same cookie domain;

◦ file upload/modification vulnerability in any web server within the same cookie 
domain; 

◦ The attacker has access to the web server within the same cookie domain;

◦ Compromised browser; or

◦ The attacker use the victim’s browser to “touch” the target web application, so that a 
session ID is assigned to the user, and the attacker read and store the session ID

Prerequisites of a successful session attack
◦ Attacker is able to fix the session ID used by the user; and

◦ The session ID does not update upon successful authentication or security context 
change

10/30/2015 18



Copyright © Ricci IEONG for UST training 2015

Session Fixation Attack 
Illustration

10/30/2015 19

Target Web 
App

1. The attacker “fix” the 
session ID to be used by 
a victim user
Set session_id=1234

2. The victim user 
access the target web 
app and supply the 
fixed session ID
session_id=1234

3. The server use the 
user supplied session ID 
and associate it with a 
newly created server 
session
session_id=1234

(3) 4. The user authenticate with 
his/her valid credentials, and 
a valid session is maintained 
in the target web app 
identified by the fixed session 
ID
session_id=1234

5. The attack craft request to 
the target web app with the 
fixed session id. The 
application thought that it 
was the victim user who 
accessed
session_id=1234



Copyright © Ricci IEONG for UST training 2015

How to Prevent Session Fixation Attack?
Application should not associate user provided session ID, if not already 
exists, with a newly created session.

◦ Instead a newly generated session ID should always be used in new session

Upon security context change (e.g. switch of protocol, successful 
authentication, successful logout, enter/exist of sensitive area, the existing 
session ID should be discarded and a new session ID should be generated

◦ So that even an attacker can fix a session ID, it cannot be used to enter more 
sensitive area

Separate sensitive and non-sensitive content into different cookie domains

Consider adding more constraints in session checking, e.g. source IP address
◦ To increase the difficulties of session fixation attack

For really sensitive area, or with high classification, session ID should be 
changed regularly

10/30/2015 20



Copyright © Ricci IEONG for UST training 2015

Predictable session ID
Some application generate session ID purely depending on sequential 
data source (e.g. sequence number, or time)

It allow attackers to easily guess the next brunches of session ID that 
may be used by users and thus impersonate them to perform actions on 
the application

10/30/2015 21

Possible solutions:
1. Add more random 

factor to the session 
ID generation 

2. Use hash function to 
process the sequential 
factor before using to 
generate session ID



Copyright © Ricci IEONG for UST training 2015

Other Problems in Session 
Management / Authentication
Logical flaw in application causing session problems
◦ Especially when the session is “incomplete” – some set by one page and 

some set by another

Authentication process isn’t “atomic”. There may be some sessions at 
intermediate state of logon which may cause problem

Some authentication process may by mistake obtain the same 
information from different source (e.g. one from server session variable, 
another from user provided parameters), which allow attackers to 
create uncertain situation by assigning two different values to those 
different sources

Session object not destroyed after critical exceptions or user log out / 
timeout

10/30/2015 22



Copyright © Ricci IEONG for UST training 2015

Other Good Practices in Session 
Management / Authentication
• When a user logon at another place, invalidate the old session ID 

unless multiple logon is supported by design

• Let session time out after certain length of user idling.

• Destroy all the session objects properly after session ends.

• Avoid using multiple source of the same data during authentication

• Session cookies should have the secure and HttpOnly flag set

10/30/2015 23



Copyright © Ricci IEONG for UST training 2015

Lab
ATTACK ON SESSION MANAGMENT, 
AUTHENTICATION AND COUNTERMEASURES

10/30/2015 24



Copyright © Ricci IEONG for UST training 2015

OWASP Top 10 & 
Countermeasures
A4 – INSECURE DIRECT OBJECT REFERENCES

10/30/2015 25



Copyright © Ricci IEONG for UST training 2015

Insecure Direct Object References

A direct object reference occurs when a developer exposes a reference 
to an internal implementation object, such as a file, directory, or 
database key. Without an access control check or other protection, 
attackers can manipulate these references to access unauthorized data

Common direct object references:
◦ File name

◦ File path (directory transversal attack too?)

◦ Database ID

◦ User ID

Examples
◦ Original URL (with access control in application logic): 

http://vulnerable.site/download.php?file=my.doc

◦ Attack: http://vulnerable.site/download.php?file=not_my.doc

10/30/2015 26



Copyright © Ricci IEONG for UST training 2015

Insecure Direct Object References

Countermeasures

10/30/2015 27

Avoid expose direct object reference to the users. User per user or per session 

indirect object references

◦ E.g. ID mapping created in the session or for specific user

◦ E.g. myupload[1], myupload[2].. Instead of file[2551], file[3022]…

Check whether the user has proper privilege before returning the object being 

referenced.



Copyright © Ricci IEONG for UST training 2015

OWASP Top 10 & 
Countermeasures
A7 – MISSING FUNCTION LEVEL ACCESS 
CONTROL

10/30/2015 28



Copyright © Ricci IEONG for UST training 2015

Missing Function Level Access 
Control
Most web applications verify function level access rights before making 
that functionality visible in the UI. However, applications need to 
perform the same access control checks on the server when each 
function is accessed. If requests are not verified, attackers will be able 
to forge requests in order to access functionality without proper 
authorization.

Example: http://vulnerable.site/restricted_area/hidden_page.html



Copyright © Ricci IEONG for UST training 2015

Missing Function Level Access 
Control
Countermeasures

The application should have a consistent and easy to analyze authorization 

module that is invoked from all of your business functions.

The enforcement mechanism(s) should deny all access by default, requiring 

explicit grants to specific roles for access to every function.

If the function is involved in a workflow, check to make sure the conditions are in 

the proper state to allow access.



Copyright © Ricci IEONG for UST training 2015

OWASP Top 10 & 
Countermeasures
A5 – SECURITY MISCONFIGURATION

10/30/2015 31



Copyright © Ricci IEONG for UST training 2015

Security Misconfiguration

Good security requires having a secure configuration defined and 
deployed for the application, frameworks, application server, web server, 
database server, and platform. All these settings should be defined, 
implemented, and maintained as many are not shipped with secure 
defaults.

For example,
◦ Directory listing enabled

◦ Default pages of servers

◦ Non-hardened services

◦ Overwriting of production configurations by less secure one from staging / 
test / development environment by mistake



Copyright © Ricci IEONG for UST training 2015

Security Misconfiguration
Countermeasures

1. Document hardening process. Include a process to check against that after 

every deployment

2. Establish good patch management scheme which deploy security patches for 

OS, software and libraries in a timely manner

3. Maintain a strong application architecture that provides good separation and 

security between component

4. Regularly perform vulnerability scans on the server

5. Pay attention to the security configuration in staging, testing or development 

environment. Restrict access to them properly.



Copyright © Ricci IEONG for UST training 2015

OWASP Top 10 & 
Countermeasures
A6 – SENSITVE DATA EXPOSURE

10/30/2015 34



Copyright © Ricci IEONG for UST training 2015

Sensitive Data Exposure
Many web applications do not properly protect sensitive data, such as credit cards, 
tax IDs, and authentication credentials. Attackers may steal or modify such weakly 
protected data to conduct credit card fraud, identity theft, or other crimes. Sensitive 
data deserves extra protection such as encryption at rest or in transit, as well as 
special precautions when exchanged with the browser.

Common reasons

◦ Sensitive Data stored in clear text

◦ Sensitive Data transmitted in clear text

◦ Old/Weak cryptographic algorithms used

◦ Weak crypto keys generated or improper key management



Copyright © Ricci IEONG for UST training 2015

Source: http://xkcd.com/538/

10/30/2015 36



Copyright © Ricci IEONG for UST training 2015

Sensitive Data Exposure
Countermeasures

1. Encrypt all sensitive data at rest and in transit.

2. Do not store sensitive data unnecessarily. Discard it as soon as possible.

3. Ensure strong standard algorithms and strong keys are used, and proper key 

management is in place.

4. Ensure passwords are stored with an algorithm specifically designed for 

password protection

5. Disable autocomplete on forms collecting sensitive data and disable caching 

for pages that contain sensitive data.



Copyright © Ricci IEONG for UST training 2015

OWASP Top 10 & 
Countermeasures
A9 – USING COMPONENTS WITH KNOWN 
VULNERABILITIES

10/30/2015 38



Copyright © Ricci IEONG for UST training 2015

Using Components with 
Known Vulnerabilities

Components, such as libraries, frameworks, and other software modules, almost 

always run with full privileges. If a vulnerable component is exploited, such an 

attack can facilitate serious data loss or server takeover. Applications using 

components with known vulnerabilities may undermine application defenses 

and enable a range of possible attacks and impacts.

Problem

◦ Vulnerability reports for commercial or open source software do not always 

specify exactly which versions of a component are vulnerable in a standard, 

searchable way.



Copyright © Ricci IEONG for UST training 2015

Using Components with 
Known Vulnerabilities
Countermeasures

Upgrading the components to new versions whenever possible

Software projects should have a process in place to:

◦ Identify all components and the versions you are using, including all dependencies.

◦ Monitor the security of these components in public databases, project mailing lists, 

and security mailing lists, and keep them up to date.

◦ Establish security policies governing component use, such as requiring certain 

software development practices, passing security tests, and acceptable licenses.

◦ Where appropriate, consider adding security wrappers around components to 

disable unused functionality and/ or secure weak or vulnerable aspects of the 

component.



Copyright © Ricci IEONG for UST training 2015

OWASP Top 10 & 
Countermeasures
A10 – UNVALIDATED REDIRECTS AND 
FORWARD

10/30/2015 41



Copyright © Ricci IEONG for UST training 2015

Unvalidated Redirects and 
Forwards

Web applications frequently redirect and forward users to other pages and 

websites, and use untrusted data to determine the destination pages. Without 

proper validation, attackers can redirect victims to phishing or malware sites, or 

use forwards to access unauthorized pages.

Common problems:

◦ http://vulnerable.site/redirect.php?dest=/folder/page.html

◦ During redirection, file content may be returned bypassing privilege checks



Copyright © Ricci IEONG for UST training 2015

Unvalidated Redirects and 
Forwards
Countermeasures

Minimize the number of redirects and forwards

Avoid using user provided content (e.g. URL parameters, cookies, for data) in 

building the destination. It can be a good idea to store destination and reference 

by ID as well.

Validate and sanitize any user provide content if they are necessary

Ensure proper privilege checking is performed before redirection and forwards



Copyright © Ricci IEONG for UST training 2015

Other Common 
Web App 
Vulnerabilities

10/30/2015 44



Copyright © Ricci IEONG for UST training 2015

OWASP 2007 Top 10 – A3 Malicious File 
Execution
Problem

◦ Attacker may be able to load malicious file to the remote web server and 
execute it

Major causes
◦ Attacker is able to upload arbitrary files or modify to the remote web server

◦ Attacker may be able to execute commands on the remote web server to 
obtain malicious files from the Internet

Countermeasures
◦ Implement strict file upload type control:

◦ E.g. by filename + by file type

◦ Disable unnecessary API on the remote web server

◦ Install Anti-virus software to the servers

◦ Consider mounting the file upload storage as non-executable

10/30/2015 45



Copyright © Ricci IEONG for UST training 2015

Mobile attack labs

10/30/2015 46



Copyright © Ricci IEONG for UST training 2015

Mobile Attack Labs
Mobile security attacks

Crack mobile apps (e.g. Android apps)

10/30/2015 47



Copyright © Ricci IEONG for UST training 2015

Mobile Security

10/30/2015 48



Copyright © Ricci IEONG for UST training 2015

Hack Brief: The Android Text 
Attack
A serious flaw in Android operating systems uncovered by a researchers at 
Zimperium zLabs could be the worst ever reported for Android devices. (27 Jul 
2015)

A hacker could gain access to an android device by sending a text message 
containing a malware-infected media attachment. It compromise Android 
phone even user did not open the text or view the media in some cases.

The remote MMS attack makes use of six critical vulnerabilities in Android 
operating systems 2.2 or later

Some chat client may not notify user after receiving the text message. For 
instance, hangouts will decipher the content before notifying the user

An example of exploitation is Stagefright remote code execution exploit that 
attack the stagefright media library

10/30/2015 49



Copyright © Ricci IEONG for UST training 2015

StageFright Android attack
Attackers only need to attack at selected mobile number with a specially 
crafted media file delivered via MMS

10/30/2015 50



Copyright © Ricci IEONG for UST training 2015

Mobile Security incidents and 
issues
TOP THREATS TO MOBILE (BY 
CLOUD SECURITY ALLIANCE, 2012)

◦ 1. Data loss from lost, stolen or 
decommissioned devices.

◦ 2. Information-stealing mobile malware.

◦ 3. Data loss and data leakage through 
poorly written third-party apps.

◦ 4. Vulnerabilities within devices, OS, 
design and third-party applications.

◦ 5. Unsecured WiFi, network access and 
rogue access points.

◦ 6. Unsecured or rogue marketplaces.

◦ 7. Insufficient management tools, 
capabilities and access to APIs (includes 
personas).

◦ 8. NFC and proximity-based hacking.

TOP 10 OWASP MOBILE RISKS –
FINAL LIST 2014

◦ M1: Weak Server Side Controls
◦ M2: Insecure Data Storage
◦ M3: Insufficient Transport Layer 

Protection
◦ M4: Unintended Data Leakage
◦ M5: Poor Authorization and 

Authentication
◦ M6: Broken Cryptography
◦ M7: Client Side Injection
◦ M8: Security Decisions Via Untrusted 

Inputs
◦ M9: Improper Session Handling
◦ M10: Lack of Binary Protections

10/30/2015 52



Copyright © Ricci IEONG for UST training 2015

Security Threats to Mobile 
Device (Surface)

10/30/2015 53



Copyright © Ricci IEONG for UST training 2015

Mobile Security framework 
from Mobile Life Cycle

10/30/2015 54

Source: Mobile Strategy: How Your Company Can Win by Embracing Mobile Technologies



Copyright © Ricci IEONG for UST training 2015

Holistic view and planning
Business requirement

Infrastructure security

Mobile devices security

Enterprise Mobile Management

Security Testing

What else?

10/30/2015 55

Source: From OGCIO’s Practice Guide on Deploying Mobile Device Management

Source: Introducing the Spectrum of Trust for Mobile Enterprise Design, Gartner, Published: 4 April 2014 ID:G00261172



Copyright © Ricci IEONG for UST training 2015

Mobile needs development 
consideration

Integrated Development 
Environment needed?

Development language 

Apps development scheme 
◦ Native, Hybrid, Web?

◦ Web Access, App Wrapping, Mobile 
SDK?

10/30/2015 56

Web Access

App Wrapping

Mobile SDK



Copyright © Ricci IEONG for UST training 2015

Mobile Devices Hardening
Mobile Devices dependent 
hardening control

Different brand has its 
scheme of hardening

10/30/2015 57



Copyright © Ricci IEONG for UST training 2015

Define the roadmap towards 
mature mobile security

Types of mobile apps to be supported?
◦ Web Apps

◦ Custom Apps

◦ Commercial off the shelf Apps

Security Solutions required
◦ Access Management

◦ Federation Identity Management

◦ API Security Management

◦ SDK for Advanced Authentication, SSO

Others
◦ Enterprise App Store?

◦ Notification Services

◦ Adaptation

◦ Data channel protection

10/30/2015 58

Source: Slideshow.Techworld.com for Sybase



Copyright © Ricci IEONG for UST training 2015

Security Testing
Design Review

Static application security testing 
(SAST)

Dynamic application security testing 
(DAST)

10/30/2015 59

http://pic.dhe.ibm.com/

Security Testing?



Copyright © Ricci IEONG for UST training 2015

Define the roadmap towards 
mature mobile security

10/30/2015 60

A Guide to Gartner's Enterprise Mobile Security Self-Assessment 

Published: 13 January 2014, G00246739 



Copyright © Ricci IEONG for UST training 2015

Reference Books
Related Content Book Chapter

W8, 9: Web Security Guide to Computer 
Network Security (2015)

Chapter 6: Scripting and 
Security in Computer 
Networks

Web Security OWASP web site OWASP Top 10

Web Authentication and 
Authorization attack

Hacking Web 
Applications Exposed 3

Chapter 4: Attacking Web
Authentication, Chapter 
5: Attacking Web 
Authorization

Mobile Security OWASP web site Top 10 OWASP Mobile 
Risks – Final List 2014

Vulnerable mobile web 
sites

OWASP web site https://www.owasp.org
/index.php/OWASP_Mo
bile_Security_Project#M-
Tools

10/30/2015 61


